Large-eddy simulation of a bluff-body-stabilized non-premixed flame using a recursive filter-refinement procedure

نویسندگان

  • Venkatramanan Raman
  • Heinz Pitsch
چکیده

A large-eddy simulation (LES) of a bluff-body-stabilized flame has been carried out using a new strategy for LES grid generation. The recursive filter-refinement procedure (RFRP) has been used to generate optimized clustering for variable density combustion simulations. A methane–hydrogen fuel-based bluff-body-stabilized experimental configuration has been simulated using state-of-the-art LES algorithms and subfilter models. The combustion chemistry is described using a precomputed, laminar flamelet model-based look-up table. The GRI2.11 mechanism is used to build the look-up table parameterized by mixture fraction and scalar dissipation rate. A beta function is used for the subfilter mixture fraction filtered density function (FDF). The simulations show good agreement with experimental data for the velocity field. Time-averaged profiles of major species and temperature are very well reproduced by the simulation. The mixture fraction profiles show excellent agreement at all locations, which helps in understanding the validity of flamelet assumption for this flame. The results indicate that LES computations are able to quantitatively predict the flame structure quite accurately using the laminar flamelet model. Simulations tend to corroborate experimental evidence that local extinction is not significant for this flame.  2005 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error analysis of large-eddy simulation of the turbulent non-premixed sydney bluff-body flame

A computational error analysis is applied to the large-eddy simulation of the turbulent non-premixed Sydney bluff-body flame, where the error is defined with respect to experimental data. The errorlandscape approach is extended to heterogeneous compressible turbulence, which is coupled to combustion as described by a flamelet model. The Smagorinsky model formulation is used to model the unknown...

متن کامل

Towards Large Eddy Simulations of a Bluff Body Burner Using an Unstructured Grid

A Large Eddy Simulation of a bluff body flame has been carried out using an unstructured grid. The flame, burning a methane-hydrogen fuel with detailed combustion chemistry (based on a mechanism of 18 species) is simulated using STAR-CD. The mixture fraction is used as a conserved scalar, and a subsequently temperature, density and species mass fraction are calculated using a probability densit...

متن کامل

Large Eddy Simulation of an Oscillating Flame in Turbulent Flow around a Bluff Body

The present research aims at providing a reliable model for the simulation of oscillating flames which are often discovered in industrial gas turbine combustors operating at lean premixed conditions. The paper presents a Large Eddy Simulation of an oscillating bluff-body stabilised flame with a probability density function model of the subfilter scale interaction. The results show good overall ...

متن کامل

Resolution Requirements in Stochastic Field Simulation of Turbulent Premixed Flames

The spatial resolution requirements of the Stochastic Fields probability density function approach are investigated in the context of turbulent premixed combustion simulation. The Stochastic Fields approach is an attractive way to implement transported Probability Density Function modelling into Large Eddy Simulations of turbulent combustion. In premixed combustion LES, the numerical grid shoul...

متن کامل

Effect of heat release on turbulence and scalar-turbulence interaction in premixed combustion

Stereoscopic particle image velocimetry and planar laser induced fluorescence measurements of hydroxyl radical are simultaneously applied to measure, respectively, local turbulence intensities and flame front position in premixed ethylene-air flames stabilized on a bluff body. Three different equivalence ratios, 0.55, 0.63, and 0.7, and three different Reynolds numbers, 14 000, 17 000, and 21 0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005